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1.5.2.2 Asymptotic properties within a single basin—three examples (advanced) 

In an attempt to establish consistency and asymptotic normality for the SPARROW model parameter 
estimates, we immediately encounter a technical problem. The problem arises in the assumptions needed to 
extend the number of observations to an infinitely large size. In many applications of a SPARROW model, the 
researcher will have a prescribed watershed containing a defined reach network. Because the watershed 
represents a bounded region, the only way in which observations can be extended to infinity is by infilling—that 
is, increasing the density of measurements within the study area. A hydrologic system is by nature bounded and 
accumulative, however, meaning the contaminant flux at the outflow of the basin is an accumulation of 
individual processes within a bounded watershed. It is also true that not all uncertainty in the description of the 
basin can be resolved at the basin outlet, even if the uncertainty is independent at the smallest scale. As is shown 
below, the existence of error at the aggregate scale implies asymptotic theory commonly used to justify finite 
sample estimates is not valid in the context of a finite watershed.  

To better understand the limitations imposed by a finite basin with aggregate error, we present three 
examples. Each example is built from a stochastic process that is well defined and statistically independent at 
the smallest scale, yet leads to non-degenerate stochastic behavior at the aggregate scale. The examples 
demonstrate that model estimates from finite basins do not converge in probability to a constant, implying the 
asymptotic properties of consistency and normality do not necessarily hold. The utility of this result is technical; 
however, the examples serve another purpose—they demonstrate how a SPARROW model arises from a 
fundamental description of hydrologic stochastic processes. In this way, some light is shed on the somewhat 
‘black box’ nature of large-scale hydrologic models. 

The first example, conceptually depicted in figure 1.20, considers a simple SPARROW model for a 
single reach of length . In this example, we assume that there are no incremental additions to stream flux Td
along the reach. The only hydrologic process acting on flux is in-stream attenuation, governed by the decay 
parameter δ and the length of the reach to which it is applied. Let there be n monitoring stations along this 
reach, sequentially indexed by i beginning with the station located at the furthest upstream location (fig. 1.20). 
Let  represent the length of stream between station i – 1 and station i. Let the decay process operating on the id
section of stream between station i – 1 and station i be subject to error . This error is assumed to be iu
continuous, independent between any two non-overlapping segments of the stream, and have a mean of zero and 
a variance that is proportional to the stream length . An example of such a random process taken from the id
stochastic calculus literature is the Brownian motion process derived from the Weiner process (see Malliaris and 
Brock, 1982). It has been shown that any process exhibiting continuity and having stationary, independent and 
identically distributed increments must be normally distributed (Breiman, 1968, proposition 12.4). Finally, let 

iy  represent the log of flux measured at location i, and let 0y , the log of flux at the upstream end of the reach, 

be defined and known.  
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Figure 1.20. A graphical depiction of a simple hydrologic system consisting of a single reach segment of length  divided into n Td
sub-segments of length , each having a measured logarithm of flux id iy . 

 
 
The SPARROW model equation in this case for any measured segment i is 

 

(1.68) ( )1
1ln i i iy d u

i iy e e y dδ δ− − +
−= = − i iu+ , 

where ( ) 2
i v iV u ,  being the variance of the decay process per unit distance. From equation (1.68), we dσ= 2

vσ
see that this simple case leads to a SPARROW model that is linear with heteroscedastic errors; a model that is 
efficiently estimated using standard weighted least squares. 

To facilitate exposition, we write the simple model for all n observations in vector notation 
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covariance matrix for the errors is ( ) ( )2
vE σ′ =uu D d , where  is the diagonal matrix operator that creates ( )⋅D

an n×n diagonal matrix from its n-element vector argument. The weighted least squares estimate of the 
coefficient δ and its variance are given by 
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Notice that the optimal weighted least squares estimate of δ depends only on the change in flux over the entire 
pathway, 0ny y− ; measurements of flux made at intermediate locations along the pathway have no bearing on 

the optimal estimate. Consequently, the variance of  does not depend on n, implying that no amount of infill δ̂
sampling can improve its estimate. In this case, the estimate  is unbiased; it has an expectation of δ .  is not δ̂ δ̂
consistent, however, because its variance does not go to zero asymptotically (this is a consequence of  being δ̂
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normally distributed; see theorem 18.14 in Davidson, 1994). Here, because  are derived from a Wiener iu

process, the distribution of  will be normal. It is possible, however, to construct other examples in which the δ̂
underlying process is not continuous, and therefore not Wiener and not normally distributed. Consequently, the 
asymptotic distribution of the estimated decay rate need not be normal. 

A trivial extension of this simple example can be used to show that the asymptotic limitations of the 
hydrologic model cannot be overcome by simply appealing to a higher dimension. Consider a single dendritic 
reach network consisting of an infinite number of reach segments indexed by i, i = 1, … , , contained within a ∞
bounded two-dimensional watershed of area A (see figure 1.21). For each reach segment i, define a 
corresponding sub-basin of area Ai that represents the incremental drainage of the segment, so that 

1 ii
A A∞

=
=∑ i. Assume there exists some finite constant b such that for all i. This assumption implies id bA≤

that no segment can be infinitely long, a reasonable assertion if flux is to accumulate at the outlet of the 
watershed in finite time. Finally, as in the previous example, we make the simplifying assumption that sources 
are located only at the upstream ends of each segment.   
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Figure 1.21. The arrangement of reaches, sources and monitoring stations in a two-dimensional hydrologic model. 

The previous example shows that the most efficient way to monitor a reach is to monitor the endpoints; 
monitoring intermediate locations along a reach has no bearing on the estimate of decay. Here it is assumed that 
the monitoring of reach i represents two measurements—a downstream measurement at the reach outlet and an 
upstream measurement just below the introduction of the reach’s source. In a sample of N independent reaches, 

the estimate of decay is again efficiently estimated by weighted least squares. The first two equalities for  in δ̂
equation (1.70) remain applicable, resulting in 
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where, in this context, the ith element of  pertains to the difference between the downstream and upstream Δy

measurements of reach i. Since  for each i, we have id bA≤ i
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The variance of the estimator is again bounded away from zero, regardless of the number of observations. As N 

goes to infinity, and every segment of the reach network becomes monitored, the variance of  does not go to δ̂
zero. Consequently, the conditions for consistency are not met. 

The last example demonstrates that the limitations of asymptotic analysis within a finite basin are not 
restricted to the estimation of the decay rate, but also pertain to the estimation of source coefficients. Consider 
again the simple case of a single reach of length . For this example, it is assumed that the in-stream decay Td
rate is zero throughout the full reach segment. Arrayed along the reach segment are sources, defined 

continuously by the function . Associated with each source is a source coefficient that determines the ( )S t

amount of source  that is delivered to the stream. The source coefficient is assumed to be stochastic and is ( )S t

given by ( )( )a dq t , where a is a constant and dq(t) is a Poisson jump process defined over continuous distance 

t, where dq(t) equals 1 with probability λdt and equals zero with probability 1  (see Malliaris and Brock, dtλ−
1982). Thus, the expectation of dq(t) is λdt, and the variance is (ignoring terms smaller than dt) also λdt. The 
adoption of a Poisson process to define the source coefficient implies sources are effectively distributed 
discretely over the length of the reach but can occur at any location with equal probability. Because q(t) has 
jumps, it is not a continuous process, as was the case for the Wiener process used in the examples involving 
stream decay. Like a Wiener process, however, the Poisson process q(t) has the Markov property that the 
probability distribution for all downstream values of the q(t + s) conditioned on all information available at 
location t depends only on the local value of q(t) and not on any upstream values. This implies the intervals dq(t) 
and dq(s) are independent for  . s t≠

Assume monitoring stations are positioned at locations , with spacing . The ,  1, ,it i n= … 1i i id t t −= −
flux measured at station i is given by 
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The mean and variance of  are given by 1i iY Y−−
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Due to the assumptions associated with q(t), the covariance between  and 1i iY Y−− 1j jY Y −−  is zero for i j . ≠

Estimates of the source coefficient a and Poisson parameter λ  can be obtained from a simple linear 
model having the form 
 
(1.76) , b= +ΔY X Z
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technically a SPARROW model because it is estimated in real space as opposed to logarithm space, but it is a 
valid model and will suffice to make the necessary point concerning asymptotic properties of estimators based 
on infinitely dense monitoring stations.  

Equation (1.76) can be estimated using linear weighted least squares, with the weight of observation i 
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The weighted least squares estimate of the slope coefficient b is 
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and the variance of this estimate is given by 
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Estimates of the slope coefficient b and the mean squared weighted residual suffice to identify the source 
coefficient a and Poisson scaling factor λ ; that is, the estimated slope coefficient is an estimate of the product 

aλ , and the estimated mean squared weighted residual is an estimate of the product . The ratio of mean 2a λ
squared weighted residual to the coefficient b provides an estimate of a and the ratio of the squared coefficient 
estimate to the mean squared weighted residual gives an estimate of λ . 

From the inequality 
 

(1.80) ( ) ( ) ( ) ( )
1 1 1 1

1 1 1 1

2 2    
2

    

1 10
i i i i i i i i

i i i i

t d t d t d t d

t t t t
i i

S t S s ds dt S t dt S t dt
d d

− − − −

− − − −

+ + + +⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜⎟≤ − = −⎜ ⎟⎟ ⎜ ⎟⎜ ⎝ ⎠⎟⎜⎝ ⎠∫ ∫ ∫ ∫ , 

we have ( ) ( )
1 1

1 1

2  
2

  

i i i i

i i

t d t d

i t t
d S t dt S t dt

− −

− −

+ +⎛ ⎞⎟⎜≥ ⎟⎜ ⎟⎝ ⎠∫ ∫ , and  

 

(1.81) 

( )

( )

1

1

1

1

2 

 
 

21 1
 

i i

i

i i

i

t d

n n
t

T i t d
i i

t

S t dt
d d

S t dt

−

−

−

−

+

+
= =

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎝ ⎠
= ≥

∫
∑ ∑

∫
, 

 
 



 The SPARROW Surface Water-Quality Model: Theory, Application and User Documentation 74

which, via equation (1.79), leads directly to the lower bound on the variance of , b̂
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As with the previous examples, a finite basin, here represented by a finite value for the length of the reach, , Td

places a lower bound on the variance of the estimated slope coefficient , implying  is not consistent. b̂ b̂
The above examples illustrate that the conditions required to apply large sample theory in a hydrologic 

model can be met only by expanding the analysis to non-nested basins. In some sense this limitation is technical 
and refers only to the theoretical justification of certain statistical results. The practical implication, however, is 
that large sample theory cannot be applied in the context of a small basin in which additional observations are 
generated by increasing the density of the sampling network. If the choice is between expanding a sampling 
network by including other basins or by concentrating more samples within a given basin, large sample theory 
suggests the former would have a larger statistical payoff. There are, of course, other reasons for adopting this 
protocol; statistical inference is always improved the greater the variability in conditions expressed by the 
explanatory variables of a model. The consideration of large sample properties addressed here marginally adds 
to the considerable weight of these arguments.  

It is important to recognize that the failure of the model to yield consistent estimates within a finite 
basin is a direct consequence of the hydrologic system and is not due to any assumptions used to define the 
SPARROW model. The statistical analysis of a fixed basin using any model faces the same limitations described 
above. As long as basins are finite and uncertainty accumulates in them, it is not possible to satisfy the 
conditions needed to apply asymptotic properties to the model estimates. An alternative to the static models 
described above would be to consider data collection in the context of a dynamic model. A dynamic model 
implies data can be accumulated along a temporal dimension, in addition to the spatial dimension exploited by 
SPARROW. If the underlying error processes are dynamic, meaning, for example, the Brownian motion process 
u used in the first example varied randomly with time, then repeated sampling of a fixed basin through time 
would yield consistent estimates. Consequently, a dynamic model may display large sample behavior that 
cannot be obtained by a purely spatial analysis. If any of the underlying stochastic processes are static, however, 
varying only over space and not time, the statistical description of these processes by a dynamic model confronts 
the same asymptotic limitations as a strictly spatial analysis, such as SPARROW. 

1.5.3 Coefficient bias and uncertainty—additional issues 
The methods described in the previous sections pertain to large sample properties of the estimators. In 

finite samples, parameter estimators may be biased and may not be normally distributed; consequently, standard 
methods for testing the statistical significance of parameters could be invalid. Explicit knowledge of the 
distributions of estimators would correct this deficiency, but these distributions are typically unknown. An 
alternative approach, known as bootstrapping, is to infer the distributions of parameter estimators by assessing 
their empirical distributions, the distributions implied by the available sample data (as opposed to the population 
of all possible data). The idea is to generate all possible N-element combinations of the N observations, allowing 
repetitions of observations, with a set of coefficient estimates obtained for each combination. The distribution of 
these sets of estimates forms the empirical distribution of the coefficients. With N observations in a sample, 

there are  possible unique combinations of the observations on which to base the empirical distribution, 

a prohibitive number for even modest sample sizes. An alternative approach is to build the empirical distribution 

from R random draws of the  possible combinations. SPARROW implements such an approach, which 

is called Monte Carlo resampling, or simply resampling.  
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The bootstrap paradigm is this: the relation between the population distribution and the true moments of 
the population is assumed to be the same as the relation between the empirical distribution and the estimated 
moments, as obtained via minimization of some objective function (nonlinear least squares, for example). The 
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practical implication of this paradigm is that if the computation of some statistic of interest requires knowledge 
of the relation between the population distribution and the true moments, the relation between the empirical 
distribution and the empirical moments can be used in its place. This paradigm is later shown in section 1.6 to be 
most useful for the assessment of bias and uncertainty in predictions, but is shown here to also be useful for 
assessing small sample properties of the coefficient estimates. 

1.5.3.1 Bootstrap estimate of coefficient bias (advanced) 

The additive bias of a coefficient estimate, say , is given by ˆ
kβ
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Both terms in the right-hand side of this expression are unknown. The bootstrap paradigm tells us to use the 

empirical distribution relative to the empirical estimate  to assess the bias. That is, random sets of N ˆ
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observations, drawn from the original set of N observations with replacement, are used to generate alternative 

estimates of the coefficients, each using the same methodology that was used to compute . Let there be R ˆ
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The implementation of the bootstrap procedure used in SPARROW can be described in terms of 

repetitive application of random weights to the model observations, following each reweighting with a re-
estimation of the coefficients. For each bootstrap repetition , randomly generate N observation 1,...,r = R
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bootstrap repetition as determined using the methods described in section 1.5.3.1. 
The bootstrap estimate of bias mirrors equation (1.83) and is given by 
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R
kβ�  represents an estimate of  approximately corrected for first-order bias. That is, for any P < 2,  times kβ

PN
the remaining bias (after bootstrap bias correction) goes to zero as N goes to infinity, a limit that has the 

mathematical notation  (Davison and Hinkley, 1997; Shao and Tu, 1995). The correction is assessed as ( 2O N− )
approximate because a formal proof of the limit pertains to the assumption that  is a quadratic statistic, which ˆ

kβ
is only approximately true in the case of nonlinear least squares (Davison and Hinkley, 1997). 
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The difference between the average of the bootstrap estimates and the parametric estimate indicates the 
degree to which the estimation methodology can recover the original parameters that underlie the data 
generating process. In large samples, given the standard assumptions described above, the coefficient estimates 
are consistent and the t-statistics have a standard normal distribution. If the bootstrap estimate of bias, which is 
sensitive to sample size, were large, then this would indicate the assumption of large sample properties is not 
appropriate.  

1.5.3.2 Bootstrap estimate of the coefficient covariance matrix (advanced) 

The R estimates of the coefficient vectors  also can be used to derive the bootstrap estimate of the ˆ
rβ

covariance matrix of the coefficient estimates (Efron and Tishirani, 1993) 
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elements of this matrix. Efron and Tishirani (1993) show that this estimate has a variance (that is, the variance 

of the variance) of order , meaning that for any P < 1 the variance estimate ( 2O N− ) ( )ˆ RPN V β  goes to zero as 

N goes to infinity. This is the same accuracy as the asymptotic covariance matrix given in equation (1.57), so 
there is no advantage in using the bootstrap estimate of the covariance matrix as compared to the parametric 
(that is, asymptotic) estimate. 

1.5.3.3 Bootstrap coefficient confidence interval (advanced) 

The standard confidence interval given above in equation (1.67) requires the assumption that the 
coefficient estimates have an underlying normal distribution. Although the large sample distribution of the 
coefficient estimates approaches normal, there is no assurance that the normal approximation is valid in finite 
samples. Bootstrap analysis has been used to derive a more refined estimate of the confidence interval in these 
cases. 

One bootstrap approach, called the hybrid approach, uses the quantiles of the empirical distribution for 

,
ˆ ˆ
k r kβ β− in place of the standard normal quantiles appearing in equation (1.67). Let ( ),k RH x  represent the 

empirical distribution of ; that is, ,
ˆ
k r kβ β− ˆ ( ),k RH x  is the share of the R bootstrap estimates of  that ,

ˆ
k r kβ β− ˆ

are less than or equal to x. The inverse of the empirical distribution, denoted ( )1
,k RH p− , represents the empirical 

quantile associated with the cumulative probability p. The hybrid bootstrap equal-tail two-sided confidence 
interval lower and upper bounds are 
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Note that a standard error term, comparable to the ( )ˆkkV β  term in equation (1.67), is absent from (1.87). This 

is because the empirical distribution pertains to , which is not normalized by its standard deviation. ,
ˆ
k r kβ β− ˆ

Note also that it is not necessary to apply bias correction to the estimates in order to obtain valid confidence 
intervals. This follows from the assumption that bias is additive and constant in the sense that the entire 

distribution of  is shifted with respect to  by the same amount, as is the distribution of  with respect to ˆ
kβ kβ ,

ˆ
k rβ

*ˆ
kβ . In this case, as long as the bias in the bootstrap estimates equals the bias in the parametric coefficient 
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estimate , the bias in the derivation of the quantile ˆ
kβ ( )1

,k RH p−  is negated by the bias in  resulting in an ˆ
kβ

unbiased interval. Further remarks regarding this property of the hybrid interval are included in the discussion of 
prediction intervals in section 1.6.5. 

 In practice, the quantiles are determined by ordering the R estimates of  in ascending ,
ˆ
k r kβ β− ˆ

order, with  representing the s( )kq s th value from this list. Then 
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where z⎢ ⎥⎣ ⎦  is the floor function (round to the next lowest integer), and z⎡ ⎤⎢ ⎥  is the ceiling function (round to the 

next highest integer) (see appendix A for a derivation). 
Shao and Tu (1995) show that the hybrid bootstrap equal-tail two-sided confidence interval is second-

order accurate (meaning that for all P < 1,  times the difference between the hybrid confidence interval PN
coverage probability and the stated confidence level goes to zero as N goes to infinity)—the same as the normal 
approximation for the parametric method. Therefore, there is no statistical advantage to using bootstrap methods 
for estimating equal-tailed two-sided confidence intervals for parameters. [Note that second-order accuracy for 
confidence intervals means something different from removal of second-order bias, which explains why the 
criterion for P here is P < 1 and was P < 2 above in reference to bias.]  

Shao and Tu (1995) also show that for one-sided confidence intervals, accuracy can be improved by 

expressing the desired coefficient in its pivoted form—that is,  is divided by a bootstrap estimate of its ,
ˆ
k r kβ β− ˆ

standard error. The accuracy of the one-sided confidence interval in this case is greater than the accuracy 
obtained with the one-sided normal approximation or the hybrid bootstrap described above. Unfortunately, the 
method requires a double bootstrap whereby an additional set of bootstrap estimates is required for each original 
bootstrap repetition in order to estimate the variance. Given the high computational costs required to obtain a 
single set of bootstrap estimates in SPARROW, performing a double bootstrap is infeasible and the more 
accurate pivot form of the confidence interval is not implemented. 

 1.5.3.4 Discussion of bootstrap methods for coefficient estimation 

Shao and Tu (1995) point out that for any given bootstrap replication it is possible the resampled data 
may be collinear. This would occur if a large number of draws from the N observations happened by chance to 
come from only a small number of observations. They suggest a filter be placed on the execution of each 

bootstrap iteration such that the iteration’s coefficient estimates are set to the parametric estimates  if the 

smallest eigenvalue used to evaluate multicollinearity (see the discussion of eigenvalues in section 1.5.4.3) is 
below some specified threshold. In practice, even with a modest sample size, this is a highly unlikely outcome 
unless the sample itself, without resampling, is already highly multicollinear. SPARROW currently does not 
check the eigenvalues of the individual bootstrap iterations in order to prevent the inclusion of highly 
multicollinear coefficient estimates in the bootstrap analysis. 

ˆ
kβ

The bootstrap methods described above are useful for assessing small sample bias in the nonlinear 
weighted least squares estimated coefficients. The methods are less useful for testing hypotheses. As explained 
above in section 1.5.3.3, the bootstrap estimate of the confidence interval is of the same order of accuracy as the 
standard normal assumption. Thus, with regard to evaluation of model specification and reporting of the 
estimation results, it is reasonable to limit the analysis to the parametric estimates—the estimates obtained 
without resampling that are justified on the basis of asymptotic behavior. This is a practical observation as well 
for it means much of the hard work required to specify a model can be completed without the need for the 
computationally expensive bootstrap analysis. A useful estimation strategy, therefore, is one that applies 
bootstrap analysis only after a satisfactory model specification has been achieved. The estimate of bias in the 
coefficient estimates revealed by that analysis demonstrates the reasonableness of the assumption of asymptotic 
conditions for the evaluation of the parametric coefficient estimates. Of greater utility, however, as shown in 
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sections 1.6.3-5, will be the application of the empirical distribution of the coefficient estimates to the evaluation 
of bias and uncertainty in model predictions. 

1.5.3.5 Measurement error (advanced) 

We conclude this section with a discussion of the effects of measurement error on the analysis of bias 
and uncertainty. Measurement error can arise in the model in either the explanatory variables or the dependent 
variable. In linear models, it can be shown that the presence of measurement error in explanatory variables tends 
to bias coefficients towards zero. The intuitive understanding of this bias is that greater noise in a predictor 
makes it more difficult to detect a causal relation with the dependent variable, causing a reduction in the 
absolute value of the correlation between the dependent variable and the predictor measured with noise. A 
technical explanation shows the bias to arise due to correlation between the measured values of the explanatory 
variable and the error terms that, under conditions of measurement error in a predictor, incorporate some of the 
error associated with that predictor. In the limit, as the variance of the measurement error goes to infinity, it will 
not be possible to discern any relation between the predictor and the dependent variable, and the correlation 
becomes zero. The introduction of measurement error in one of the predictors has the potential of biasing the 
coefficient estimates for other predictors if the covariance between these predictors and the true value of the 
noisy predictor is non-zero. Unfortunately, the direction of this “collateral” bias cannot be predicted without 
knowledge of this covariance structure.  

It is important to understand that the effect of measurement error in the predictors, although leading to 
biased coefficient estimates, does not necessarily imply bias in the model predictions. For linear models, in fact, 
the best prediction of the dependent variable is obtained using the coefficient estimates from standard least 
squares methods, without adjustment for measurement error bias. It is not immediately clear whether this 
assessment carries over to nonlinear models because the measurement error creates error in the model that is 
non-additive with respect to the dependent variable.  

The ability to detect a relation between the dependent variable and the predictors may also be impeded 
if there is large measurement error in the dependent variable. This may be of particular concern because the 
dependent variable, flux, is not typically observed but is estimated from a separate relation involving streamflow 
(see section 1.3.1 above). As usually formulated, measurement error in the dependent variable does not result in 
a bias in coefficient estimates; rather, measurement error increases the mean squared error of the model, thereby 
proportionately inflating the standard error of all model coefficients. The measurement error introduced by the 
estimation of flux, however, is not the standard measurement error. The usual definition of measurement error 
expresses error as orthogonal to the true variable, implying the error is correlated with the measured variable. 
But for flux estimation, which is an expectation of true flux conditioned on streamflow and other variables, the 
error is orthogonal to the measurement. This implies a potential bias is introduced in the coefficient estimates if 
the SPARROW predictor variables are correlated with the unobserved error in flux.  

To understand the nature of the bias, consider a simple analysis of such bias arising in a linear model. 
Let y be a  vector of the true dependent variable and let  be its measured value. Because  is a 1N× y� y�
conditional expectation of y, we have 
 
(1.89) , = +y y u�

where u is a  vector of error terms orthogonal to  with mean zero and variance . Consider a 1N× y� 2
uσ

regression of y on a set of K predictors, denoted by the  matrix X. The estimated coefficients, which are N K×

best linear unbiased, are given by ( ) 1ˆ −′=β X X X y′ . The coefficients estimated with the measured dependent 

variable is 
 

(1.90) . ( ) ( )1 1ˆ ˆM − −′ ′ ′ ′= = −β X X X y β X X X u�

Thus, if the predictors are correlated with the orthogonal component u, the estimated coefficients using the 
measured flux are biased relative to the true coefficients. 
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An upper bound on the absolute magnitude of the bias can be obtained by noting that the absolute value 
of the correlation between u and any of the predictors is bounded by 1. Equivalently, without centering of the 
variables, consider the regression of u on , the kkX�

th column of the transformed explanatory variable 

( ) 1−′=X X X X� . The sum of squared errors of that regression must satisfy 

 

(1.91) , ( ) 1
0k k k k

−
′ ′ ′ ′− >u u u X X X X u� � � �

or ( )( )k k k′ ′ ′<X u u u X X� � � . Let ( )′X� �D X  represent the diagonal matrix composed of the diagonal elements of 

the square matrix ( ) 1−′ ′=X X X X� � , let u Nσ ′≡ u u , and let the bias in ˆ Mβ  be given by 

( ) 1−′ ′ ′≡ =Δβ X X X u X u� . The bound in equation (1.91) implies a bound on the absolute value of the bias 

given by 
 

(1.92) ( )( )
1

21
uNσ

−′≤Δβ D X X i , 

where i is a 1K×  vector of ones. It is obvious from equation (1.92) that the upper bound on bias goes to zero as 
the measurement error in the dependent variable, , goes to zero. The bias bound is also smaller the larger is uσ

the variation in the predictors; however, because of the N  term, the bias does not go to zero as sample size 
goes to infinity. 

All terms on the right-hand side of the inequality in equation (1.92) can be computed from information 
on the standard error of the flux estimates, , obtained from output of the flux estimation model, and the K-uσ

element vector of the standard errors of the ˆ Mβ  coefficient estimates, ( ) ( )( )
1

212ˆM
eSE σ

−′=β D X X i , and root 

mean squared error of the regression model, , both obtained from regression model output. The bound given eσ
in equation (1.92) expressed in these terms is  
 

(1.93) ( )ˆMu

e

N SEσ
σ

≤Δβ β . 

Although the analysis used to obtain equation (1.93) is based on the assumption of a linear model, the 
bound is equally valid, in an asymptotic sense, for coefficients estimated from a nonlinear model. Note, 
however, that the standard error of flux, , for a SPARROW analysis would need to be in logarithm units. An uσ
approximation of this standard error can be made by taking the average across monitoring stations of the ratio of 
standard error of the mean flux estimate, in mass units, to the estimate of mean flux. 

The primary protection against bias arising from dependent variable measurement error is to exclude 
stations from the analysis that have a large standard error for their flux estimate. The weighting of observations 
according to the standard error of the flux estimate may be another, less drastic option, although it should be 
noted that the problem of bias cannot be eliminated by weighting alone.  

The nature of the measurement error in the dependent variable removes a potential concern in models 
that include nested stations (models in which some monitoring stations are located upstream of other monitoring 
stations). For these models, the dependent variable is also a predictor, and the measurement error in the 
dependent variable would seem to induce coefficient bias for the same reasons, remarked above, that predictor 
variable error causes bias. Because the error in this case is not correlated with the dependent variable, however, 
no bias will arise. 
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1.5.4 Evaluation of the model parameters 

Parameter evaluation in SPARROW modeling has the objectives of determining whether a converged 
model gives statistically sound and physically interpretable coefficient values. The process of parameter 
evaluation commonly becomes a delicate balance, with allowances being made for one consideration in order to 
accommodate strong evidence or beliefs from the other. If after completing this section the reader retains a view 
that statistics is best practiced as an art, a proper understanding of this process will have been achieved.  

1.5.4.1 Statistical evaluations 

The first objective in parameter evaluation entails the appraisal of model parameters for statistical 
significance and the quantification of uncertainty (i.e., the range of probable values of the parameters). This 
provides important information for identifying unique model specifications (i.e., parameters and values for 
which the model predictions are sensitive) and determining the level of model complexity (i.e., number and 
types of explanatory variables and model functions) that can be empirically supported by the stream monitoring 
data. The emphasis on parameter estimation in SPARROW models has the objective of identifying the important 
contaminant sources and factors affecting mean-annual contaminant transport over large spatial scales in soils 
and in ground and surface waters.  

The key parameter statistics that a user should examine include the estimated mean values of the 
coefficients, estimates of the variance of these coefficient estimators based on the standard error estimate, and 
measures of statistical significance based on statistical evaluations of the t statistics (ratio of the coefficient 
value to its standard error) (see table 1.5). These statistics are biased in finite samples but consistent as sample 
size goes to infinity; the t statistics are asymptotically distributed as a standard normal. The p-values are based 
on a two-tailed probability from a Student’s t distribution. The p-values can be used to identify statistically 
significant model coefficients—i.e., those that are statistically distinguishable from zero—and can be used to 
refine the parameter set to identify parsimonious SPARROW models. The derivation of these statistics for 
nonlinear optimization procedures is shown in section 1.5.2.1.  

Evaluations of the statistical significance of SPARROW model coefficients allow a user to determine 
whether the coefficients are statistically distinguishable from zero. The results of a two-sided hypothesis test are 
routinely reported in the SPARROW software. The null hypothesis ( ) of this test is  versus an 

alternative hypothesis ( ) . The reported p statistic is the probability that the absolute value of a 

statistic drawn from a Students t distribution, with degrees of freedom equal to the number of observations 
minus the number of estimated coefficients (that is, the number of coefficients not determined by prior 
constraints), equals or exceeds the absolute value of the computed t statistic for the estimated coefficient. Large 
absolute values of t are less frequently observed in the Students t distribution and thus are indicative of model 
coefficients that are more statistically distinguishable from zero. This implies the confidence intervals of 
statistically significant coefficients are not likely to include zero.  

0H 1 0β =

aH 1 0β ≠

Because the distribution of the t statistic is valid only asymptotically (see section 1.5.1.3), it would be 
equally valid to base the p statistic on a Students t distribution having infinite degrees of freedom—that is, the 
standard normal distribution. Note also that if the alternative hypothesis restricts the value of the coefficient to 
be either positive or negative, as would be the case if the model specifies either a lower or upper bound of zero 
for the coefficient, it is appropriate to use a one-sided p statistic. One-sided p statistics are not reported by 
SPARROW, but can be easily calculated by dividing the reported two-sided p statistic by two. 

Upon examination of the p-values reported in table 1.5, we determine that all but four coefficients 
(point-source effluent, grass land, shrub land, and large stream reach decay) are statistically significant at the 
5 percent level (p-value < 0.05). The three source coefficients for which the null hypothesis of = 0 is not 
rejected at the 5 percent level would be considered statistically significant at the 10 percent level under the 
restriction that the coefficients must be positive. In that case, the null hypothesis is rejected if 
(p-value / 2) < 0.10, which is the case for these three coefficients. 

β
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Table 1.5. SPARROW estimates of model statistics for the United States national total nitrogen illustration data set. 
 

[The land-to-water delivery variables are expressed as deviations from their national means, thereby standardizing the 

source coefficients to reflect the mean rate of delivery of nitrogen from each source to aquatic systems; Q is the stream 
reach mean-annual streamflow; “N.A.” indicates not applicable; kg, kilograms; ha, hectares; yr, year; hr, hours; cm, 
centimeter; km, kilometers; ° F, degrees Fahrenheit; ft, feet; sec, second; m, meters; <, less than; and > greater than] 

 

Parameter 
Coefficient 

units 
Mean 
Coeff. 

Std. 
Error 

t 
statistic p-value 

Literature / 
expected 

range 

Sources

Point-source effluent dimensionless 0.1340 0.0893 1.50 0.1343 1.0 

Wet-nitrate atmospheric 
deposition  dimensionless 1.406 0.3762 3.74 0.0002 0 – 3# 

Fertilizer use dimensionless 0.1882 0.0433 4.35 <0.0001 0 – 1 

Livestock waste dimensionless 0.2136 0.0814 2.62 0.0090 0 – 1  

Forest land kg ha-1 yr-1 2.82 0.8354 3.39 0.0008 0.3 – 12* 

Grass land kg ha-1 yr-1 1.42 0.9515 1.50 0.1354 

Shrub land kg ha-1 yr-1 1.02 0.6565 1.55 0.1216 
0.5 – 25* 

Transitional land (forest-
agriculture) kg ha-1 yr-1 75.10 18.43 4.07 <0.0001 0.3 – 40* 

Urban land kg ha-1 yr-1 64.60 16.30 3.96 <0.0001 3 – 40* 

Land-to-Water Delivery

Permeability hr cm-1 -0.1177 0.0158 -7.42 <0.0001 N.A. 

Drainage density km-1 1.575 0.4124 3.81 0.0002 N.A. 

Temperature ° F-1 -0.0331 0.0069 -4.81 <0.0001 N.A. 

Reach decay

Small streams  

Q <500 ft3sec-1 day-1 0.3676 0.046 7.98 <0.0001 

Intermediate streams 

500<Q <10,000 ft3sec-1 day-1 0.1029 0.0245 4.20 <0.0001 

Large streams  

Q >10,000 ft3sec-1 day-1 -0.0003 0.0294 -0.0099 0.9921 

0.005 – 2 

Reservoir decay m yr-1 7.34 1.91 3.85 0.0001 < 10 

Mean square error 0.337      

Root mean square error 0.581      

Number of observations 379      

R-squared 0.910      

# The land-to-water delivery of wet nitrate deposition may exceed unity because of additional contributions from wet 
deposition of ammonium and organic nitrogen and dry deposition of inorganic nitrogen (Alexander and others, 2001) 

* Literature ranges from Jordan and Weller (1996) and Beaulac and Reckhow (1982) 
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The two-sided t statistic reported in SPARROW is equivalent to a partial F test (i.e., ) in which 
the test evaluates the statistical significance of a complex model that results from the addition of one additional 
explanatory variable to a simple model that has all of the other variables present. The simple model is therefore 
nested within the more complex model and differs by only one explanatory variable. By contrast, cases may 
exist in which a nested F test needs to be applied to determine whether the addition of more than one 
explanatory variable (e.g., the collection of aquatic decay variables or land-to-water delivery variables) results in 
a significant improvement in the performance of the model (i.e., improved explanation of the variability in the 
response variable). This test is not calculated as part of the SPARROW software, but can be manually calculated 
by the user. The nested F statistic is expressed as 

2F t=

 

(1.94) 

( )
( )

S C

S C

C

C

SSE SSE
df dfF SSE
df

−
−

= , 

where SSES is the sum of squares of error of the simple model with degrees of freedom, dfS; and SSEC is the sum 
of squares of error of the complex model with degrees of freedom, dfC (degrees of freedom equal the difference 
between the number of observations and the number of estimated parameters—excluding parameters determined 
by a prior constraint). The test provides a measure of the tradeoff between the reduction in error (i.e., improved 
explanatory power) that results from a more complex model and the estimation penalty that results from the 
addition of parameters and the corresponding reduction in the model degrees of freedom. The test, therefore, 
assesses whether the reduction in error is statistically worth the loss of information for estimating the model as 
measured by the degrees of freedom. As with the t test, the F test is valid only asymptotically, implying it could 
be replaced by a chi-square test with degrees of freedom equal to dfs – dfc. 

One example use of a nested F test in SPARROW is the evaluation of a hypothesis concerning whether 
the addition of aquatic decay parameters to a model collectively results in a statistically significant improvement 
in the overall model performance. In this test, we compare the more complex model containing aquatic decay 
variables as given in table 1.5 (MSE equals 0.337) with a simple model wherein both the in-stream and reservoir 
decay coefficients are removed (MSE equals 0.767). In this case, an F statistic is computed such that 
 

(1.95) 

(283.6 122.4)
(379 12) (379 16) 119.5122.4

(379 16)

F

−
− − −= =

−

. 

The p-value (less than 0.00001) associated with this F statistic is highly significant, and indicates that the 
addition of the aquatic decay coefficients provides a significant improvement in the explanatory power of the 
model. Note that this test does not indicate that all of the aquatic coefficients are significantly distinguishable 
from zero, but only that at least one of the coefficients is. The results of a partial F test (i.e., the individual 
coefficient t statistics) must be examined to determine the significance of individual coefficients. 

1.5.4.2 Physical interpretations  

A second complementary objective in assessing SPARROW model parameters is the evaluation of the 
parameters for their physical interpretability. This objective entails the evaluation of the sign and magnitude of 
model coefficients to test hypotheses about the importance of different contaminant sources and the hydrologic 
and biogeochemical processes that are represented by the explanatory variables of the model. The 
interpretability of the parameters and their relation to specific processes is enhanced in SPARROW by the use of 
a mass balance, mechanistic structure that explicitly separates the terrestrial and aquatic properties of watersheds 
and accounts for nonlinear interactions among watershed properties (see section 1.2.2), together with an 
emphasis on the statistical estimation of parameter values. As discussed in section 1.2.3, the SPARROW model 
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parameters reflect the net effects over large spatial scales of an aggregate set of hydrologic and biogeochemical 
processes and human-related activities.  

The sign of SPARROW model coefficients can be evaluated to determine the direction of the relation of 
any explanatory variable to the in-stream estimates of the mean-annual flux (i.e., the model response variable). 
The direction of the relation should be assessed for consistency with the anticipated response based on available 
theoretical or empirical information about processes that may be related to individual explanatory factors. For 
example, for the model results shown in table 1.5, a negative sign on the soil permeability coefficient indicates 
that total nitrogen loads in streams are inversely related to permeability—i.e., in-stream loads of nitrogen are 
generally lower in watersheds with highly permeable soils. This relation is frequently found in SPARROW 
nitrogen models and is consistent with the storage or permanent removal (i.e., denitrification) of nitrogen in soils 
and the subsurface. The relation indicates that nitrogen losses are larger (and in-stream nitrogen flux smaller) in 
watersheds where water and nitrogen are more readily routed through permeable soils. The sign of the 
coefficient is also important in estimating physically meaningful contaminant source terms in SPARROW. 
Interpretable sources within the model are generally expected to contribute positive mass to the watersheds. In 
fact, we often constrain the sources to be positive; thus, a one-sided hypothesis test is frequently of interest in 
evaluating the statistical evidence of the importance of source inputs in the model. Constraints on the coefficient 
sign are generally not applied to land-to-water delivery factors as there is commonly no compelling prior 
expectation as to the nature of the physical relation to flux. Constraints on the aquatic decay factors are also 
generally unnecessary; however, there may be a need to constrain the “large” river decay rates (mean rates are 
frequently near zero with a considerable fraction of the parameter distribution below zero) and reservoir decay 
rates to positive values in bootstrap executions of final SPARROW models to obtain a more physically realistic 
simulation of contaminant transport in rivers (i.e., negative portions of the parameter distribution may 
unrealistically skew the estimates of the mean; e.g., see discussion in Alexander, Elliott, and others, 2002). 

The values of selected source and aquatic decay coefficients should also be evaluated to determine 
whether they are consistent with the range of values expected on the basis of literature studies and the prevailing 
information on experimental reaction rates. For the source coefficients to be easily interpreted, they must be 
standardized for mean levels of the land-to-water delivery variables (see section 1.4.3), such as those shown in 
table 1.5. It is important to note that the coefficients of the land-to-water factors cannot be interpreted 
individually in terms of a contaminant transport rate that is specific to the landscape property, but must be 
combined with individual sources to quantify an aggregate delivery of the contaminant mass to streams. By 
contrast, the aquatic decay coefficients can be directly interpreted without any standardization. For example, the 
rates of nitrogen removal in streams (ranging from near zero to 0.37 day-1) and reservoirs (7.3 meters yr-1) 
reported in table 1.5 can be directly compared to literature rates, as illustrated in previous sections of this report.  

Source-related coefficients that are based on source inputs expressed in areal units, such as the land-use 
source terms (forest, grass, shrub, urban) in table 1.5, describe the mass per unit area delivered to streams from 
these land areas. These areal expressions of contaminant transport or “export” can be directly compared with 
ranges of export coefficients that are frequently reported in the literature (e.g., Beaulac and Reckhow, 1982). 
Coefficients reported for different land uses such as those in table 1.5 generally compare favorably with export 
coefficients reported in the literature. The SPARROW estimated export coefficients in table 1.5 are standardized 
to reflect the supply and delivery of nitrogen to aquatic systems under the mean levels of the landscape delivery 
factors in the model. Of course, one complicating aspect of such a comparison is that the literature export 
coefficients implicitly include the effects of watershed properties (e.g., soils, climate, in-stream processes) on 
nutrient transport that likely differ from those in the SPARROW model. Nevertheless, SPARROW estimates 
and export coefficients reported in the literature are consistent in indicating that the nutrient supply and delivery 
to streams and reservoirs is generally larger in urban and agricultural watersheds; much lower export 
coefficients are found in forests and in grass and shrub lands, where relatively small natural sources (e.g., 
nitrogen fixation by vegetation) of nitrogen predominate.  

Other source coefficients that are expressed in dimensionless units provide a measure of the fraction of 
the contaminant that is delivered from each source to streams, rivers, and reservoirs. These coefficients can be 
evaluated to determine how reasonably they reflect the net mean rates of contaminant removal by a source as 
part of the delivery to aquatic systems. For example, about 18 percent of the fertilizer inputs of nitrogen are 
delivered to streams based on the model results reported in table 1.5. Such large losses of fertilizer inputs are 
generally expected and reflect the numerous processes and activities that remove nitrogen from agricultural 
lands and along subsurface flow paths. The estimated fertilizer coefficient reflects the aggregate effects of these 
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factors and may include the volatilization of ammonia fertilizer forms, the removal of nitrogen in harvested 
crops, and long-term immobilization of nitrogen and denitrification in soils and ground waters. In the case of 
atmospheric deposition, the greater than unity coefficient of 1.4 is consistent with additional contributions from 
wet deposition of organic nitrogen and dry deposition of inorganic nitrogen, which are not included in the wet 
nitrate measurements input to the model. This result would be expected, provided that these unmeasured 
quantities are correlated with the measured wet deposition, which is commonly the case (Alexander and others, 
2001). 

When direct measures of point source loadings (e.g., municipal wastewater effluent) are used in the 
model (and the response variable has identical units), the point-source coefficient estimated in SPARROW is 
expected to be close to 1.0 (i.e., the confidence interval should contain 1.0). A significant deviation from 1.0 for 
the estimated point-source coefficient may indicate a poor specification of the model or inaccurately measured 
point-source effluent data. Point-source coefficients for the national and selected regional total nitrogen models 
are shown in figure 1.22. The confidence interval for most of the regional models contains 1.0, and many mean 
estimates are also very close to 1.0 in value. By contrast, the national model displays a very low coefficient (less 
than 0.20) that suggests appreciable bias in the point-source coefficient estimate. Because of the known poor 
quality of the wastewater treatment plant estimates of nitrogen loads in the national dataset, it seems likely that 
the bias reflects point-source data quality problems rather than a misspecification of the model. 

 

Figure 1.22. Estimated municipal wastewater treatment coefficient in the national and regional SPARROW models. [The United 
States (U.S.) 1992 model is based on estimates of municipal/industrial nitrogen loads from a 1992 data retrieval from the U.S. 
Environmental Protection Agency Permit Compliance System (PCS); TN, total nitrogen; TP, total phosphorus; CI, confidence 
interval.] 

1.5.4.3 Statistical insignificance and multicollinearity  

A SPARROW model coefficient that is statistically insignificant (e.g., p equals 0.50) indicates that the 
estimated mean value of the coefficient is statistically indistinguishable from zero and that a large proportion of 
the parameter distribution would lie below zero (i.e., the confidence interval includes zero). This implies that the 
associated explanatory variable is relatively uncorrelated with the response variable. It is important to recognize 
that this outcome of the statistical evaluation of the coefficient does not necessarily indicate that the watershed 
properties represented by this variable are intrinsically unimportant in affecting the supply and transport of 
contaminants in the modeled region. Several possible statistical factors may explain the occurrence of 
statistically insignificant coefficients that should be considered in evaluating the model fit and coefficient 
estimates, including the number of observations (i.e., station mean loads) in the regression (i.e., quantity of the 
information), the amount of variability in the explanatory factors (i.e., quality of the information content), and 
the level of collinear variability in the explanatory factors (i.e., multicollinearity).  

One cause of a statistically insignificant coefficient is the lack of a sufficient quantity of stream 
monitoring data. The statistical power to detect the effects of explanatory factors on stream contaminant loads in 
a SPARROW model is dependent on the number of observations (i.e., monitoring station mean flux 
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measurements) used in the nonlinear regression. As discussed in section 1.2.4, the number of stream monitoring 
stations influences the level of complexity (i.e., number of explanatory variables) that can be supported in 
SPARROW models. For example, we find that fewer explanatory variables—typically from six to eight—are 
statistically significant in many of the regional models as compared to upwards of 18 or more variables in the 
national model. Therefore, models with fewer station flux measurements are generally more limited in their 
ability to identify statistically significant explanatory variables. 

A second cause of a statistically insignificant coefficient is the lack of sufficient spatial variability in an 
explanatory factor (in the introduction, we cited this as related to issues of the quality of the data). The effect of 
explanatory factors on stream contaminant flux can be difficult to detect in SPARROW models if the spatial 
variability in the factor is relatively small over the modeled region. For example, precipitation is clearly an 
important contributor in determining the magnitude of stream contaminant flux at regional and national spatial 
scales. In many of the regional SPARROW models, however, variability in mean-annual precipitation is small 
across the regions (i.e., variations that are less than an order of magnitude) and this factor is rarely found to be 
statistically significant as a land-to-water delivery factor. By contrast, mean-annual precipitation varies by 
several orders of magnitude in the national SPARROW model and in the New Zealand national model (Elliott 
and others, 2005) and has been found to be highly significant as a delivery factor in recent versions of these 
models. Given the level of statistical power for many of the regional models, the spatial variability in the 
regional measures of precipitation in comparison to that of other controlling factors in the models is typically 
insufficient to support the estimation of an explicit precipitation term in the models. It is important to note that 
this does not imply that a model without precipitation data as input is invalid as a prediction tool. Indeed, such a 
model can be reliably used to predict in-stream flux and the contributions of pollutant sources to streams. The 
model does not, however, provide an explicit description of how precipitation influences pollutant flux, and 
therefore could not be used to assess climate-related effects on stream water quality. 

It is also noteworthy that the source coefficient for a relatively small contaminant source (e.g., natural or 
background inputs of nitrogen) may be difficult to estimate with a high degree of statistical significance because 
the true numerical value of the coefficient is small, especially relative to its level of precision (i.e., standard error 
of estimate). The detection of only weak statistical significance for such a variable does not necessarily provide 
sufficient cause to exclude it, especially if the intent in using the model is to provide a comprehensive 
understanding of contaminant sources. For example, the grass and shrub land export coefficients are only 
weakly significant in the national SPARROW model illustrated in table 1.5, although the level of precision of 
these terms is equal to or even surpasses the precision associated with the more highly significant forest export 
coefficient. Nitrogen from natural fixation on grass and shrub lands is generally smaller in comparison to 
nitrogen generated from fixation and other sources in forests (Jordan and Weller, 1996; nitrogen export from 
forested land may also include some contributions from atmospheric deposition). This is a likely explanation for 
why the estimated mean nitrogen export from grass and shrub land (table 1.5) is only about one half of that 
estimated for forested lands.  

Finally, another potential explanation for the lack of statistical significance in two or more explanatory 
variables is the effect of multicollinearity on the variance of the model parameters. Multicollinearity describes 
the presence of high levels of correlation between two or more explanatory variables in a regression model that 
cause all of the correlated variables to have statistically insignificant coefficients. SPARROW provides several 
statistics and matrices that are useful for evaluating the presence and causes of multicollinearity.  

The problem of mulicollinearity is one of model interpretability rather than model validity. The 
presence of multicollinearity does not imply the model coefficients or their standard errors are estimated with 
bias. Moreover, the predictions from the model are asymptotically minimum variance unbiased. The most 
serious consequence of multicollinearity is that coefficients associated with collinear variables (or, in the case of 
the nonlinear SPARROW model, collinear gradients) are imprecisely estimated. This lack of precision is 
reflected in large standard errors and a tendency for coefficients of collinear variables to be individually 
insignificant. Thus, in cases of multicollinearity, a coefficient estimated as statistically insignificant may in fact 
represent an important process in the model, but its incremental contribution to model fit is masked by other 
collinear processes. Indicators of multicollinearity are useful therefore in distinguishing coefficients that have 
potential significance and coefficients that truly should be dropped from the model. 

An interesting situation arises if two coefficients are collinear but one coefficient is statistically 
significant and the other is not. It can be shown that collinearity does not affect the ratio of variance between 
two coefficients or, therefore, the ratio of t-statistics. It can be concluded therefore that the signal being 
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transmitted through the significant coefficient from its associated predictor is quantitatively more important than 
the signal transmitted through the insignificant coefficient. In other words, collinearity in this case is not so 
strong that it masks the contribution of a quantitatively important predictor. For example, as illustration of this, 
we modified the total nitrogen model described in section 1.4.4 so two highly spatially correlated atmospheric 
deposition sources, wet nitrate and ammonia, are included in the model. In the resulting model, we find that only 
the nitrate deposition coefficient is statistically significant (p equals 0.0007), whereas the ammonia deposition 
coefficient is negative and statistically insignificant (p equals 0.90). This result suggests that the strongest 
atmospheric deposition effect on in-stream nitrogen flux is apparent from the wet nitrate deposition source in the 
model. 

The variance inflation factor (VIF) is a commonly used statistic for determining the importance of 
multicollinearity. Under linear least squares, the variance inflation factor for coefficient k, VIFk, is given by the 

kth diagonal element of the ( ) 1−
′X X� �  matrix, where  is the N ×(K – 1) matrix of predictor variables, excluding 

the intercept, centered and scaled to unit length (Montgomery and Peck, 1982). That is, observation i for 

predictor variable k has been transformed according to 

X�

( ) 1 2
ik k kX ikX X S= −� , where kX  is the mean of the N 

observations of the kth variable and ( 2

1

N

k ik
i

S X X
=

= −∑ )k . It can be shown (Montgomery and Peck, 1982) that  
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where 2
kR  is the coefficient of multiple determination from the regression of Xk on the remaining K – 1 

predictor variables, including an intercept. If there is a close relation between variable k and the remaining 
variables, then 2

kR  is near one and the variance inflation factor is large. Conversely, if the kth variable is 

independent of the other variables, then 2
kR  is near zero and the variance inflation factor is near its lower bound 

of one.  
Another useful interpretation of the variance inflation factor relates to the effect that collinearity of the 

predictors has on coefficient variance, t-statistics, and confidence intervals (Montgomery and Peck, 1982). The 
square root of the kth coefficient’s variance, given by the model root mean squared error times the kth diagonal 
element of the inverse of the  matrix, is proportional to the length of the k′X X th coefficient’s symmetric 
confidence interval and is inversely proportional to the magnitude of the kth coefficient’s t-statistic. Suppose 
observations could be chosen in such a way that each predictor is independent of all others but retains the 
predictor variances exhibited in the original sample. Such a sampling scheme, called an orthogonal design, has 
no collinearity and results in the smallest possible coefficient variances—that is, the smallest possible values 
along the diagonal of the  matrix. Consequently, orthogonal design sampling results in the smallest 
possible (symmetric) confidence intervals and largest possible t-statistics for the estimated coefficients. It can be 
shown that the variance inflation factor for a coefficient is equal to the ratio of that coefficient’s variance to the 
coefficient’s variance that would be possible under orthogonal design. The square root of the variance inflation 
factor, therefore, represents the proportion by which the t-statistic could be increased if multicollinearity were 
eliminated. This insight provides a useful interpretation of the variance inflation factor. If a coefficient is 
insignificant, and inflating the coefficient’s t-statistic by the square root of its variance inflation factor fails to 
make the coefficient significant, then multicollinearity is an unlikely explanation of the coefficient’s 
insignificance. Conversely, if applying the inflation factor makes the coefficient significant then it is possible 
that multicollinearity is masking the significance of the coefficient. 

′X X

To apply the variance inflation factor to a nonlinear model, and thus provide for interpretation of 
collinear coefficients as described above, the gradients (see section 1.5.1.2) evaluated at the final coefficient 

estimates, , are substituted for the predictor variables, X. Because a SPARROW model typically has no 

intercept, however, it is inappropriate to center the gradients prior to normalizing to unit length. This is because 
the R

( )* ˆ
βf β

2 statistic implied by a variance inflation factor computed from centered predictors is a valid indicator of 
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explanatory power only if the set of predictors includes an intercept; the relation between the variance inflation 
factor computed using centered predictors and coefficient variance does not hold absent the intercept term. 
SPARROW automatically tests the gradient vectors to determine if they include an intercept term. If no 
intercept is present, the normalization of the gradient vectors is performed without centering, resulting in the 

computation of an uncentered variance inflation factor, VIF . This factor can be used to determine the potential 
effect collinearity has on the coefficient t-statistics in exactly the same way the standard variance inflation factor 
is used if an intercept is present.  

The uncentered variance inflation factor also bears a relation to a fit statistic. That is, 

( )2VIF 1 1k kR= − , where 2
kR  is the uncentered r-square statistic formed by regressing the kth gradient on the 

remaining K – 1 gradients. The uncentered r-square statistic, defined as the ratio of the sum of squares of the 
regression predicted values to the sum of squares of the regression dependent variable, is commonly used in 
place of the normal r-square if the regression does not include an intercept. The uncentered r-square statistic is 
bounded between 0 and 1 and will always exceed the standard r-square. This implies that the uncentered 
variance inflation factor always exceeds the standard variance inflation factor, the relation between them being  
 

(1.97) 2
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k k
k
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where CV  is the coefficient of variation for the kk
th gradient. 

As an illustration of the effects of multicollinearity in a SPARROW model, we modified the total 
nitrogen model described in section 1.4.4 by adding a new explanatory variable that is the square of an existing 
variable (see results in table 1.6). In this example, the new variable (TEMP2) is the square of temperature 
(TEMP), which is a statistically significant (p less than 0.0001) land-to-water delivery factor in the original 

model. The new estimated coefficients are both statistically insignificant with, VIF values of about 30. The 
magnitude of the variance inflation factor indicates that the variance of the coefficients has been inflated by 

about a factor of five (i.e., VIF equals 5.5). At least one of the coefficients (TEMP2) would be statistically 
significant (t equals 3.7; p equals 0.0001) if this effect were accounted for and suggests that multicollinearity 
could be masking the significance of the coefficient. 
 

Table 1.6. Model coefficient results for two correlated temperature land-to-water delivery factors in the national total nitrogen 
model.  
 
[The total nitrogen model contains source, land-to-water delivery, and discrete reach-decay variables as described in 
Alexander and others (2000), a reservoir removal rate specified according to equation (1.35); the model, applied to the 
Enhanced Reach File 1 (ERF1) version 2.0 infrastructure as described in Nolan and others (2002), was modified by adding 
a new temperature variable (TEMP2) that is equal to the square of a land-to-water temperature variable (TEMP) already in 
the model; VIF is the variance inflation factor]  

 

Parameter Coefficient 
Standard 

Error 
t 

statistic p-value VIF  
Eigenvector 

term 

Temperature 
(TEMP) -0.0046 0.0382 -0.1197 0.9048 30.42 0.7072 

Temperature 
squared 
(TEMP2) 

-0.0010 0.0015 -0.6769 0.4989 29.51 -0.6957 

Eigenvalue 
Spread 312.4     
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Another statistic reported by SPARROW to help identify multicollinearity is the eigenvalue spread. The 

eigenvalue spread is computed from the eigenvalues of the  matrix of normalized gradients. If an intercept 
is absent from the model then the normalized gradients are uncentered prior to normalization. The eigenvalues 

of the K ×K matrix  represent the K roots, denoted λ , of the equation . Because 

 is a positive semi-definite matrix, all of its eigenvalues must be greater than or equal to zero. The 
eigenvalue spread is defined as 

′X X� �

′X X� � ( )det 0λ′ − =X X I� �

′X X� �
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λ
κ

λ
= . 

If the  matrix is nearly singular, an implication of multicollinearity among the gradients, then one or more 
eigenvalues will be near zero; a large value for eigenvalue spread is therefore evidence of multicollinearity. In 
practice, if the eigenvalue spread is less than 100 there is no serious problem with multicollinearity 
(Montgomery and Peck, 1982). As discussed above, however, issues of collinearity make sense only in the 
context of determining coefficient significance. The fact that a general model statistic like the eigenvalue spread 
is large does not necessarily imply any of the coefficients are insignificant or help identify which coefficients 
have statistical significance that is sensitive to collinearity. According to our illustration model results in table 
1.6, the eigenvalue spread was reported as being well above 100. 

′X X� �

Perhaps the most useful interpretation derived from the  matrix is the use of its eigensystem for 
determining which coefficients are related to each other through collinear gradients. Inference on this issue can 

be ascertained by looking at the eigenvectors corresponding to very small eigenvalues. The  matrix can be 
factored into the following eigensystem 

′X X� �

′X X� �

(1.99) , ′ ′=X X CΛC� �

where is a diagonal matrix whose elements are the eigenvalues, λ , of , and C is a K ×K orthogonal 
matrix having the property that . The k

Λ ′X X� �
′ =C C I th column of C is called the kth eigenvector corresponding to 

eigenvalue . Pre- and post-multiplying  by  and C results in the relation C X . Define 

. Then, for each k,  
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Suppose the kth eigenvalue is nearly zero—indicating collinearity. Then equation (1.100) implies that for each 
observation i, ,k iZ  is nearly zero which, through the definition of Z, implies 

(1.101) . , ,
1

0
K

j k i j
j

C X
=

≈∑ �

That is, the kth eigenvector represents the coefficients that define a collinear grouping of the normalized 
gradients. Because the normalized gradients are unitless, so too are the elements of the eigenvector, implying the 
values of individual terms are comparable. Therefore, the largest absolute value elements of the kth eigenvector 
effectively define the group of gradients that are collinear. 

A table of eigenvalues and eigenvectors is reported in the SPARROW software output that lists the 

eigensystem of the  matrix (see figure 1.23). The first row of the eigensystem output gives the K 
eigenvalues, and the column beneath each eigenvalue represents the associated eigenvector. Insight into the 
collinear structure of the model is obtained by first looking across the first row to determine if there are any 
eigenvalues near zero. If an element in the first row is near zero, then the largest absolute value elements in the 
column below it correspond to the predictors that form a set of collinear gradients. According to our illustration 
results for the model given in table 1.6, the largest absolute value eigenvector elements in the column 
corresponding to the smallest eigenvalue appear for the two temperature variables and have values of 0.7072 

′X X� �
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and -0.6956 for TEMP and TEMP2, respectively. All other eigenvector elements—those associated with all the 
other variables in this column—are near zero, between -0.05 and 0.05. The high values of the eigenvector 
elements for TEMP and TEMP2 indicate the presence of two collinear variables in the model.  

 

 
Figure 1.23. SAS output showing the eigensystem from an example SPARROW model.  

In the event that multicollinearity is identified as a problem for a particular model specification, the 
following corrective actions are suggested (although none of these are completely satisfying and/or consistently 
successful). The first defense against multicollinearity is to collect more monitoring data. The standard errors of 
coefficients are inversely proportional to the square root of the number of observations. Therefore, increasing 
the number of observations has the effect of enlarging the magnitude of t-statistics, making it more likely that a 
given value of a coefficient is significant. A second approach is to simply remove one of the coefficients 
associated with a collinear set of gradients. Although this approach could lead to a misspecified model and 
thereby bias the estimates of coefficients, it could also improve the accuracy with which other collinear 
coefficients are estimated, thereby increasing their significance. Finally, if it is suspected that collinearity is 
causing a group of coefficients to be individually insignificant, it is possible to form a statistical test, an F test, 
that jointly evaluates their significance (see the previous discussion of the F test in this section; the F statistic is 
given in equation (1.94)). A significant F statistic is evidence that the collinear coefficients are jointly 
significant and that collinearity is masking the significance of individual coefficients. Unfortunately, it is not 
possible to know if one or all of the collinear coefficients belong in the model. Moreover, the F test is not 
appropriate when one of the collinear coefficients is individually significant. 

The explanatory variable covariance and correlation matrices provide additional information about 
collinear relations between the variables; however, this evaluation is less useful if the collinearity involves more 
than two predictors. The covariance matrix describes the covariances between the estimated coefficients that 
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arises from the particular finite sample used to estimate the model. The reported covariances for the nonlinear 
SPARROW model are asymptotically valid, meaning that the estimates are valid in large samples but are only 
suggestive in small samples. The K ×K covariance matrix is computed as the mean squared error of the model 
times the inverse of the  matrix, where X in the nonlinear context is the N ×K matrix of gradients 
corresponding to each of the K parameters. The matrix is symmetric with the coefficient variances along the 
diagonal. Because covariances are somewhat difficult to interpret, and depend on the units of the underlying 
variables, the associated correlation matrix provides a more readily interpreted metric for examination. An 
element in the correlation matrix represents the correlation between two estimated coefficients. The element 
given in the ith row and jth column is computed by taking the covariance between the ith and jth coefficients 
and dividing by the square root of the product of the variances for the ith and jth coefficients. As with 
correlations in general, the elements of this matrix must lie between –1 and 1. Because a coefficient estimate is 
perfectly correlated with itself, the elements along the diagonal are set to one. As previously explained in this 
section, collinear predictors tend to have coefficients with large standard errors—the large standard errors 
arising from large covariance among the collinear coefficients. The correlation matrix can be useful in 
identifying the bivariate case of multicollinearity—that is, collinearity between only two predictors; in this case 
the coefficients estimated for the two predictors will have high variance and a large mutual correlation. A simple 
way to evaluate suspected collinearity between two statistically insignificant coefficients is therefore to check 
the correlation matrix for a large value of correlation between these two coefficients.  

′X X

1.5.5 Evaluation of model errors 

The estimated residuals from the model contain a great deal of information for evaluating model 
specification. The assumptions of the model (see section 1.5.1.2) require the weighted residuals to be identically 
distributed (homoscedastic), independent across observations, and uncorrelated with the explanatory variables. 
In this section, we describe various statistics and graphical procedures that are useful for evaluating the 
reasonableness of these assumptions for a given SPARROW application. 

1.5.5.1 Heteroscedasticity 

Estimation of a SPARROW model, based on nonlinear least squares methodology, requires that the 
model residuals be independent and identically distributed. The residuals are not required to be normally 
distributed; however, certain types of departures of the residuals from normality are also indicative of cases 
where the residuals are heteroscedastic—that is, not identically distributed. Heteroscedastic residuals may 
present problems for the interpretation of coefficient test statistics, which are inconsistent (biased in large 
samples) if the variance of the residuals is systematically related in some way to the predictors or, for the 
nonlinear model, to the gradients (White, 1980). Heteroscedastic residuals also cause the estimated model to be 
inefficient (Judge and others, 1985). 

Departure of the residuals’ distribution from normality does not necessarily invalidate the SPARROW 
model. The test statistics used for validating coefficient significance are based on large sample properties that 
assure normality regardless of the underlying form of the residual distribution. With regard to prediction, 
departures of the residuals’ distribution from normality can affect the validity of certain methods used for 
transformation of predictions from logarithm space to real space. However, this concern does not apply to the 
Smearing estimator used for SPARROW transformations; the Smearing estimator is consistent regardless of the 
error distribution (see section 1.6.2).  

Evidence of problems related to heteroscedasticity can be obtained primarily by inspection of a set of 
four diagnostic graphs shown in figure 1.24; the graphs are generated using the example nitrogen model 
described above in table 1.6. The first plot is of the observed versus predicted flux in log units (figure 1.24a). 
The graphed points should exhibit an even spread about the one-to-one line (the straight line in figure 1.24a) 
with no outliers. A common pattern expressed in this graph for SPARROW nutrient models is the tendency for 
larger scatter among observations with smaller predicted flux—a pattern of heteroscedasticity. One possible 
cause for this pattern is greater error in the measurement of flux in small basins due to greater variability in flow 
or to greater relative inhomogeneity of contaminant sources within small basins. If the heteroscedasticity is 
caused by measurement error, then appropriate assignment of weights reflecting the relative measurement error 
in each observation (plus an additional common model error) can improve the coefficient estimates and correct 
the inference of coefficient error. If the heteroscedasticity is due to structural features of the model, the 
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observations can be weighted to improve the coefficient estimates and correct their estimates of error. 
Alternatively, the heteroscedasticity observed in this graph could be caused by structural processes that are not 
yet included in the model.  

 
(a)      (b) 

 

 (c)      (d) 

 

Figure 1.24. Diagnostic plots for evaluating SPARROW model errors and adherence of the residuals to the model assumptions:  
(a) predicted and observed flux; (b) residuals and predicted yield; (c) residuals and predicted flux; and (d) a probability plot of 
residuals. 

The pattern of predicted versus observed logarithm of flux may also indicate systematic bias in the 
model. A significant deviation of the plotted points from the one-to-one line in a particular region of the graph 
indicates the model is structurally biased. Structural bias of this kind implies the residuals of the model are 
likely to be correlated with the predictors (another example of failure of the third assumption that residuals are 
independent of predictors) and may result in biased coefficient estimates. Such bias is generally not eliminated 
by including additional observations; rather, it is likely that an important predictor—one associated with basin 
scale—is absent from the model. Identifying such a predictor will usually correct the problem and remove the 
region-specific bias of residuals from the one-to-one line. 

The plot of log residuals versus predicted yield (i.e., mass per unit of drainage area), as shown in figure 
1.24b, is also useful for validating the model fit. The graphed points once again should exhibit an even spread 
about the one-to-one line, with no outliers. The graph is useful for identifying and diagnosing bias and 
heteroscedasticity in much the same way as the graph of predicted versus observed log of flux (fig. 1.24a). The 
conversion to yield units, however, tends to remove scale effects, such as those related to drainage area. 
Deviations from the one-to-one line in this graph are indicative of a systematic bias or misspecification of the 
model at the watershed scale related to specific land-to-water or in-stream processes, such as reservoir 
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attenuation. In this case, including an additional process or modifying the functional form of an existing process 
may solve the problem. 

A plot of log residuals versus predicted flux, as shown in figure 1.24c, provides a third check of whether 
residuals meet the assumptions of the least squares methodology: the residuals should not vary systematically 

either in terms of spread or bias with the predictions. The plotted residuals are the weighted residuals, î ie w , 

where  is the estimated residual from the fitted model and  is the associated weight assigned to each 

observation. Under heteroscedasticity, unweighted residuals may exhibit varying levels of spread across the 
range of predictions. If a proper weighting of the observations has been applied, so that the heteroscedasticity is 
removed, the residuals in figure 1.24c will show a common spread that is centered near zero throughout the 
range of predictions (homoscedasticity). A user may thus test various assignments of weights by comparing 
figures 1.24a and 1.24c: weights are optimal if the systematic pattern of heteroscedasticity in figure 1.24a is 
absent from figure 1.24c. 

îe iw

A fourth type of graph that is indicative of cases of heteroscedasticity, but is most commonly used to 
identify non-normally distributed residuals, is a probability plot of the model residuals, as shown in figure 1.24d. 
The probability plot depicts the relation between the empirical distribution of the residuals and the normal 
distribution: specifically, it is the scatter plot relating the ordered standardized weighted residuals,  and the 

quantiles of the adjusted ranks . The standardized weighted residuals have the form 
ie
∗

iq
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where  is the N ×K matrix of gradients (see section 1.5.1.4) and ( )* ˆ
′βf β ( )*

,
ˆ

i′βf β  is the 1 ×K row vector of 

gradients for observation i. The intended effect of weighting the residuals is to make the variance of  (the 

standardized weighted error) the same for each observation. The user-supplied weights, if appropriately 
specified, should correct for structural heteroscedasticity in the distribution of model residuals and the correction 
for leverage removes small sample effects on the accuracy with which specific errors are estimated. [Note that 
the standardized form of the residual in (1.102) is also known as an internally studentized residual, as distinct 
from an externally studentized residual, which is based on a mean squared error in the denominator that omits 
the i

*
ie

th observation.] The quantiles of the standard normal distribution are generated from N values of Cunnanne 
(1978) adjusted ranks (Helsel and Hirsch, 1992, p. 27). The N quantiles take the form 
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where ( )1−Φ ⋅  is the inverse of the standard normal cumulative probability distribution, i is the rank of , and a 

is the rank offset. For the Cunnane adjustment, a is set to 0.4.  
ie
∗

The empirical distribution will plot along the reference line in figure 1.24d if the standardized weighted 
residuals are normally distributed. Conversely, if the empirical distribution plot is a convex shape (that is, the 
steepness of the graph is greater than the one-to-one line for the lower portion and less than one-to-one for the 
upper portion), then the residuals are skewed to the left (negative skew), implying there are more small residuals 
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and fewer large residuals compared to a normal distribution. If the empirical distribution is a concave shape (that 
is, the steepness of the graph is less than the one-to-one line for the lower portion and greater than one-to-one 
for the upper portion), then the residuals are skewed to the right (positive skew), implying there are more large 
residuals and fewer small residuals compared to a normal distribution. If the empirical distribution generally 
plots along the one-to-one line in the middle section of the graph but the tails of the figure show points 
consistently above or below the line, then there is more or less probability in the tails as compared to a normal 
distribution. For example, a group of points falling below the one-to-one line at the low end of the graph is 
indicative of an empirical distribution having a fatter left tail than the normal distribution. A group of points 
lying above the one-to-one line on the upper end of the graph is indicative of an empirical distribution that is 
fatter than the normal distribution in the right tail.  

Because departure of the residuals distribution from normality does not necessarily invalidate the 
SPARROW model results, departures of the empirical distribution from the one-to-one line is not necessarily of 
concern. Failure to meet the three assumptions of the nonlinear least squares methodology (that residuals are 
mutually independent, identically distributed, and independent of the predictor variables) is, however, 
sometimes associated with deviations from the one-to-one line in the normal probability plot. For example, 
heteroscedasticity of the residuals (failure of the second assumption) causes the tails of the empirical distribution 
to be fatter than the normal distribution, which is expressed on the probability plot as points at the low end of the 
probability plot lying below the one-to-one line and points at the high end lying above the one-to-one line (as is 
the case for the residuals of the example nitrogen model shown in figure 1.24d). It is stressed, however, that 
heteroscedasticity represents a problem for model estimation and interpretation only if the heteroscedasticity is 
caused by failure of the third assumption, that is, if the residuals are related to the predictors (i.e., gradients). 
This particular cause of heteroscedasticity can be detected by interpreting the graph of predicted and observed 
flux in figure 1.24a. 

The probability plot correlation coefficient provides a measure of the linear correlation between the 
ordered, standardized weighted residuals ( ), obtained from the estimated parametric model, and the quantiles 

of the standard normal distribution ( ). A value of the correlation coefficient near one is evidence that the 

residuals are from a normal distribution, whereas a value below 0.98 is generally indicative of non-normal 
residuals. A table of critical values for the normal probability plot correlation coefficient is given in Vogel 
(1986).  
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A formal test of the normality assumption is provided by the Shapiro-Wilk’s test statistic. The Shapiro-
Wilks statistic takes the form 

 

(1.105) W ′ ′= v x x Mx , 

where x is a vector of the weighted residuals îe wi  ordered from low to high; M is the idempotent matrix 

calculated as ( )′−I i i i i′ , where i is a vector of ones; and v is a vector of factors representing the normalized 

values of the order statistics derived from a standard normal distribution 
 

(1.106) 1 2− −′= m mv V m m V m , 

where m is the vector of order statistics from a standard normal distribution and  is the covariance matrix of 

m. The W statistic is essentially the squared value of the correlation coefficient between the residuals and the 
expected values of the normal order statistics. Because v is approximately proportional to the normal scores, W 
is a measure of the straightness of the normal probability plot. Probability values for evaluating the statistical 
significance of W are numerically estimated in SPARROW using an algorithm by Royston (1982). The standard 
SPARROW output includes the normal distribution probability plot correlation coefficient, the Shapiro-Wilks 
normality test statistic, and the probability value of the Shapiro-Wilks test statistic. 

mV
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1.5.5.2 Spatial biases 

An important additional assessment concerns the spatial distribution of the prediction errors to 
determine if the model systematically under- or over-predicts in certain regions of the modeled basin. Evidence 
of a regional bias in the prediction errors suggests that the errors are geographically correlated and may indicate 
a misspecification of the model. In this case, the prediction errors are likely to be associated with some 
underlying property of the watershed that has important large-scale effects on stream contaminant flux, but is 
not accounted for in the model.  

One example of a spatial bias in model prediction errors was indicated in the North Carolina coastal 
SPARROW total nitrogen model (McMahon and others, 2003). A map of the prediction errors for the stream 
monitoring sites (see figure 1.25) indicated that the model over-predicted stream nitrogen flux in the headwater, 
Piedmont portions of the watersheds and generally under-predicted in the lowland, coastal areas. One possible 
explanation is that physiographic differences in the land-to-water factors related to soil properties may not be 
properly accounted for in the model. Additionally, the types and intensity of cultivation (e.g., fertilizer use) is 
generally greater in the coastal plain. The effects of these practices on stream nitrogen flux are unlikely to be 
accurately reflected in a model in which agricultural land area is used to predict agricultural nitrogen sources 
(McMahon and others, 2003).  
 

 

 
Figure 1.25. Map of prediction errors for the SPARROW total nitrogen model plotted for the stream monitoring stations in the 
North Carolina coastal watersheds. The prediction errors are expressed as log values of the residuals, computed as the difference 
between the predicted and actual log of flux. [From McMahon and others (2003).] 

The SPARROW software contains a mapping routine that allows users to plot standardized model errors 
at station locations (see figure 1.26) and visually determine whether regional patterns are present in the model 
residuals. A standardized residual has unit variance, making it interpretable in absolute terms (see equation 
(1.102)). The mapping of standardized residuals can be helpful in evaluating whether the model provides similar 
predictive capability over different regions of the modeled drainage basin. In the example in figure 1.26, there is 
an indication that the model specification slightly over-predicts stream nitrogen flux in the Ohio Valley and 
Upper Mississippi, as evidenced by the large number of green triangles that are associated with small (0 to 1.5), 
positive residuals. Regions of slight under-prediction are evident in the Columbia and Upper Missouri Rivers as 
well as along the southeastern Atlantic coast. Areas of large over- (less than -1.5) or under-prediction (greater 
than 1.5) are not as evident, but include some monitoring stations in the drainages of California and the southern 
Plains states. 
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Figure 1.26. Map of prediction errors for the SPARROW national total nitrogen model plotted for the stream monitoring stations, 
as displayed by the SAS-based SPARROW modeling software. Residuals are expressed in standardized form. 

1.5.5.3 Statistical outliers 

A final consideration of the validity of the model fit is whether there is evidence of outlier predictions—
i.e., predictions that deviate considerably from the overall distribution of the observations. The graphs of 
predicted versus observed flux, predicted versus residual flux, and predicted versus residual yield (figures 1.24a-
c) are useful for evaluating the presence of unusual or “outlier” predictions of flux from the model. Outliers may 
be indicative of model misspecification (i.e., failure to include a variable that affects stream flux) or may be 
caused by errors in the station flux estimates or explanatory factor data. Past experiences with SPARROW 
models show that many of the outlier observations are likely to be caused by problems with the data rather than 
problems with model specification, and correction of these data problems commonly leads to an improved 
model fit. One illustration of the former problem is apparent from the regional SPARROW model applied to the 
Waikato River Basin in New Zealand, as shown in figure 1.27. Here, an outlier is evident in the predicted versus 
observed yield plot (figure 1.27b)—the model greatly underpredicts the amounts of nitrogen loading measured 
at the watershed outlet. This underprediction may be explained by the predominance of horticulture or market 
gardening operations within this particular watershed, a source that was not explicitly included in the land-use 
based source model because of the unavailability of data on fertilizer use. Agricultural sources of nitrogen in the 
Waikato Basin, and those reflected in the SPARROW model of this basin, originate primarily from livestock 
wastes, especially sheep and dairy cows. Row crop agriculture is limited entirely to the one watershed for which 
the model provided a poor fit (Alexander, Elliott, and others, 2002); the inclusion of fertilizer data in the model 
would likely provide a solution to the problem. 
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(a)      (b) 

 

 
Figure 1.27. Plots of predicted and observed total nitrogen (TN) (a) flux and (b) yield for the New Zealand Waikato River Basin 
SPARROW model. [From Alexander, Elliott, and others (2002).] 

Outlier observations may also exist for one or more of the explanatory variables and may exert 
considerable influence or leverage on the model fit. Leverage statistics provide the most efficient method to 
identify these observations. The calculation of the leverage statistic is given in equation (1.103) above and is 
also discussed earlier in section 1.5.1.1. Observations with a high degree of leverage can be determined for a 
given model based on the number of estimated parameters, K, and the number of observations in the model, N. 
Leverage statistics that exceed 3K N  are those that may exert considerable influence on the model fit; these 
observations should be examined to determine whether any data errors might explain their values and to 
improve understanding of the sensitivity of the model fit to these observations. 

1.5.6 Measures of model performance and fit 
A number of standard summary statistics are reported by the SPARROW software to describe the 

absolute and relative performance of the models in explaining variablity in the response variable. The Sum of 
Squared Errors (SSE) statistic is the squared value of the estimated residual, , times its weight, w, and summed 
over all N monitored reaches 

ê

 

(1.107) . 2ˆi i
i I

SSE we
∈

=∑

The Mean Squared Error (MSE) is equal to the SSE divided by (N – K), the number of degrees of freedom for 
the error (DF Error). The “DF Error” statistic pertains to the difference between the number of observations and 
the number of degrees of freedom used in model estimation (N – K). This statistic represents the number of 
degrees of freedom used to estimate the residuals of the model. 

The root mean squared error (Root MSE or RMSE) is the square root of the mean squared error. A rule-

of-thumb for interpreting its value in relation to percent error is as follows. Let F and  denote the actual and 
predicted flux at a given location, in real space, where the predicted flux is assumed to include the adjustment 
for retransformation bias. If the residual in the model is assumed to be normally distributed with mean zero and 
RMSE , then the percent error in the prediction is given by 

F̂

σ
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Consider the percent error in flux associated with a one standard deviation error, PE(σ ). We have, 
 

(1.109) ( ) ( )2 2100 1 100PE eσ σσ σ−= − ≈ , 

where the approximation corresponds to a second-order Taylor expansion of the exponential term with respect 
to , which is approximately valid for all σ between 0 and 0.6. Thus, 100 times the RMSE approximately 
equals the percent error in the flux estimate, for any given reach, associated with a one standard deviation error. 
For greater than 0.6, the approximation is less precise and results in an overestimate of the percent error. 

σ

σ
The remaining fit statistics reported by the SPARROW software are R-square, adjusted R-square, and R-

square of the logarithm of contaminant yield. The R-square statistic (denoted 2R ) is given by (Judge and others, 
1985, p. 30) 
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where ei is the model residual, in log space, for the ith observation, *
if  is the logarithm of measured flux for the 

ith observation, and *f  is the average of the *
if  over all N observations. Adjusted R-square applies a degrees of 

freedom adjustment to the R-square statistic (Judge and others, 1985, p. 30) 
 

(1.111) ( )2 21Adjusted 1 1NR R
N K

⎛ ⎞− ⎟⎜= − −⎟⎜ ⎟⎜⎝ ⎠−
. 

The R-square and Adjusted R-Square statistics for a SPARROW model tend to be large (greater than 
0.6). Large values for these statistics result partly from the fact that much of the variation in the dependent 
variable is associated with the size (drainage area) of the basin upstream from the monitored reach, and drainage 
area in turn is typically highly correlated with contaminant source variables. A high R-square, therefore, does 
not necessarily indicate the strength of the model within a smaller basin. Goodness of model fit for small basins 
might be better described by R-square of the logarithm of contaminant yield, denoted 2

YieldR . This statistic is 

defined as 
 

(1.112) 
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where di is the log of drainage area for the ith observation and d  is the mean of di over all N observations. 
Because the log of drainage area is highly positively correlated with the log of flux, the denominator of the ratio 
term will be smaller than the corresponding term in the R-square equation, implying a smaller value for yield R-
square.  
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